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We consider seven different hexagonal discrete Boltzmann models corre- 
sponding to one, two, three, and five hexagons with or without rest particles. In 
the microscopic collisions the number of particles associated with a given speed 
is not necessarily conserved, except for two models without rest particles. We 
compare different behaviors for the macroscopic quantities between models with 
and without rest particles and when the number of velocities (or hexagons) 
increases. We study similarity waves with two asymptotic states and consider 
two classes of solutions at one asymptotic state: either isotropic (densities 
associated with the same speed are equal) or anisotropic. Two macroscopic 
quantities seem useful for such studies: internal energy and mass ratio across the 
asymptotic states, which satisfy a relation deduced from continuous theory. 
Here we report results for the isotropic solutions, which only exist, for both 
models, in the subdomains where the propagation speed is larger than some 
well-defined value. Outside these subdomains, modifications occur when the rest 
particle density becomes large. For both models we find a monotonic internal 
energy and subdomains with a mass ratio equal to the one in continuous theory. 

KEY W O R D S :  Nonlinear discrete Boltzmann models; Rankine-Hugoniot 
relations. 

1. I N T R O D U C T I O N  

In  th is  p a p e r  (see Fig. 1) we d i scuss  the  one -  (6v~), two-  (12vi,  14vi) 

F H P ,  "~ th ree -  (18v; ,  19v;) G B L ,  ~2) a n d  five- (30v~, 3lye) h e x a g o n  mode l s .  

1. O n l y  o n e  speed  exis ts  for  the  6vg m o d e l ,  tl~ so  t h a t  the  m a s s  a n d  

e n e r g y  a re  n o t  i n d e p e n d e n t .  
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Fig. I. The one-, two-, three-, four-, and five-hexagon models. 

2. Two speeds exist for the 12v; model; the mass and energy are dif- 
ferent; however, the slow and fast particles give separately mass and energy 
conservation laws. If we consider such models as binary mixtures, ~3) these 
conserved quantities have a physical meaning. If we consider them for a 
simple gas, it could be interesting to check whether, at the macroscopic 
level, differences occur from other models without such conserved 
quantities. 

3. Three speeds exist for the 14v; model with two rest particles. Colli- 
sions of the type [ 1 ] + [ 1 ] + [ 1 ] ~ [v/3]  + [0] + [0] exist�9 The numbers 
of slow and fast particles are not separately conserved. 

4. We obtain the same result for the three-speed 18v,. model (similarly 
for the 30v,. model) with collisions of the type [x/~] + [x//3] + [x/~] 
[1] + [ 2 ]  + [ 2 ] .  The total number of particles is conserved, but not the 
numbers of slow, intermediate, or fast particles separately. However, a con- 
served relation exists including both slow and fast particles. 

5. At least four speeds, including 0, exist in the 19vi, 31v~ models with 
only energy conservation between the slow, intermediate, and fast particles. 
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For one-dimensional similarity solutions along the x axis (cf. Fig. 1) 
with propagation speed ( we take into account the three Rankine- 
Hugoniot relations and the vanishing of the collision terms (binary and 
ternary collisions excluding spurious conservation laws). We determine an 
arbitrary space, including (, from which we construct the two asymptotic 
states and the associated macroscopic quantities. We want to find the 
differences between the isotropic solutions at one state (mass larger than at 
the other) and the anisotropic ones. We seek the subdomains where the 
internal energy EI is monotonic or not. (4) We also study the mass ratio p 
across the asymptotic states and compare with the corresponding Pc of the 
continuous theory. (4) An intermediate step consists in replacing El by the 
temperature: Cercignani (5) has given arguments showing that this is valid 
only for discrete models with an infinite number of  velocities. 

For the different hexagonal models of Fig. 1 we consider one-dimen- 
sional solutions along the x axis. The x coordinates for the independent 
densities are for R: 0 and Ni: _+1, _+1/2 (6v~), P~: _+3/2, 0 (12vi), M;: _+2, 
_+ 1 (18v,.), T~: _+4, +2,  S;, _+3, 0 (30v;). To each "hexagon" we associate 
a mass and a momentum. For the total mass M, momentum J, energy E, 
and Ez= E l M - ( J I M ) Z / 2  we have two types of components: 

M = M N +  M e  + M M +  M s +  M r +  2R 

( 2= 2 ,  14vi and 2 =  I, 19vi, 31vi) 

J = JN + JM + Je + Js  + J r  

E = MN/2 + 3Me/2 + 2 M  M + 6M s + 8 M r  

with M x =  X~ + X2 + 2(i"3 + X4), J x  = a(X~ -- X2 + ::3 - 3:4) for (X~, a) = 
(Ni, 1), (Mi, 2), (Ti, 4) and M r = 2 ( Y I + Y 2 + Y 3 ) ,  J y = b ( Y i - Y J ,  
( Y,, b) = (P~, 2), (Si, 6). 

We define dz  = O,Mz  + OxJz and write the mass and energy conserva- 
tion laws: 

- 20, R = (2d~v - dM -- 1 3 d r -  9ds)/3 = ( 3dN + dp -- 1 2 d r -  8ds)/4 ( 1.1 ) 

T h e o r e m  1. For multispeed models without a rest particle, con- 
servation relations exist between the slow, intermediate, and fast particles 
or equivalently between the "hexagons". 

For the 12vi model we get du = dM= 0, leading for slow and fast par- 
ticles to mass and energy conservations. For the 18vi model the relations 
2dN= dM, 3dN= - d e  between the "hexagons" cannot lead to both energy 
and mass conservation for each "hexagon" because, with the ternary colli- 
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sions, dN:~0, dp:/:0.  For  the "hexagons" of the 14vi, 19vi, 31vi models 
there exists only energy conservation in collisions among slow, inter- 
mediate, and fast particles, but no conservation laws involving only slow 
and fast particles. 

We consider similarity solutions with variable tl = x - ~ t .  With the 
densities Ni, Pj, Mi, Sj, Ti, R we associate two asymptotic states: 

(i) no1 = 1, noi, Poj  , moi , Soj , toi , ro 

(ii) glsi=noi-q-ni, ps j=poj+pj ,  m s i = m o i + m i  
(1.2) 

Ssj : SOj "1- Sj,  tsi = tol + ti 

r s=ro+r ,  i =  1, 2, 3, 4, j =  1,2, 3 

We associate ~ = --~r to R and to the Ni, Pi, Mi, Si, Ti of the different 
"hexagons": 

~ =  [ ( 3 - - 2 i )  a - l ]  xi 

~ + 2 =  [ ( 3 - - 2 i ) a / 2 - - ~ ]  xi+2 
(1.3) 

% = [ ( 3 - 2 i ) b - r  i = 1 , 2  

0"if3 = - - r  

with a, x i=  l, ni=2,  mi=4,  t i and b, yi=3/2,  p i= 3, si; X+- =XI + X,_+ 
(3+l ) (X3+X4) /2  with X = Y ,  ~/ ,  9 -  and ~ - + = ~ 1 + ~ 2 + ( 1 + 1 ) ~ 3 / 2  
with ~ = ~ ,  6 a. 

We write the three conservation laws associated with the 
Rankine-Hugonio t  relations: 

[ M ]  = J r  + + ~ / ' +  + 2 ~  '+ +~--+ + 2 5 ~  + + 2 N = 0  

[ E ]  = 2 J r  + + JV+/2 + 8Y --+ + 126e + + 3 ~  '+ = 0  

[ J ]  = . / V -  + 2 J [ -  + 3 ~ -  + 4 ~ - - -  + 6 5  p -  = 0  

- - 2 ~  = [3JV + + 2 ~  + -- 12~ --+ -- 165a + ]/4 

= [ 2 Y  + - - j / +  -- 13Y -+ - 185o+ ]/3 

= - - [ 4 ~  + + 3 J [  + + 153 -+ + 2 2 6 e  + ] 

(1.4) 

with ~ 4:0 or = 0 depending on whether the rest particle is present or not. 
Consequently at the (i) isotropic state due to r o = m ~ U 3 =  p~t/2 or = 0  we 
see that in subdomains the rest particle, if it is present, can be the 
dominant  term and similarly for the anisotropic state. 
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C o r o l l a r y  1. For  the models  without rest particles [ ~ = 0  in 
(1.4)], there always exist j ump  relations between the slow, intermediate,  
and fast particles or between the "hexagons".  

F rom (1.4) we deduce JV "+ = 0  (6vi), JV "+ = ~ +  = 0  (12vi, mass and 
energy conservat ion for slow and fast particles). For  the 18v~ model we 
have, for instance, the relation JN,+= 2 J :  + between fast and slow par-  
ticles, but with X + # 0 ,  ,M + 4:0, ~ +  4:0, and similar relations for the 30v; 
model. On the contrary,  for the 14v;, 19v;, 31vi models  with ,~ 4:0, only the 
energy relation exists between the masses of  the different "hexagons".  

We report  (without proof)  results obtained from the weak shock 
theory. For isotropic solutions the characteristic velocities ~I jl = ~ + ,  0 are 
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Fig. 2. (A) 6v isotropic, noi = 1, n~i~ 0. (B) 6v anisotropic, (ii) ns3 # 0, nsl r 0. 
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the same for the 12vi, 14v,., the 18vi, 19vi, as well as for the 30vi, 31v i 
models and the shock inequalities have been verified. Here 

( ;+ = _ [ ( 1  +9pol  + 16tool + 144sol + 256tol)/ 

2(1 +3pro +4mol  + 12Soi + 16tol)] la (1.5) 

2. I S O T R O P I C  A N D  A N I S O T R O P I C  ( i )  S T A T E  S O L U T I O N S  

1. For isotropic solutions we have verified (Appendix)  the constraint 
ICI 1> 1/2, observed monotonic internal energy (I in the figures) Et, P = P c  

(A) 

: " ~  Pc-",,,,. 

- 1. - 0 . 7  - 0 . 5  

(B) 
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Fig. 3. (A) Top: 12v, 14v isotropic, (ii) ns~4:0, n~3~0, pst~0; (B) bottom: I2v, 14v 
isotropic, (ii) densities #0. (C) 12v, t4v anisotropic, (ii) state only ns~ #0, Ps~ ~0. 



Hexagonal Discrete Boltzmann Models 341 
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Fig. 3. (Continued) 

curves, and found larger domains for the models with rest particles: 14v,., 
19v~, 31v~. In Fig. 2A we find P = P c  for ( =  -1 /2 ,  nsl =2,  solutions with 
all (ii) state densities nonzero (curves a) and only two of them (b). In 
Fig. 3A (left) with three nonzero (ii) state densities the domain is limited by 
Pol/> 0 (12vi), Pol = ro 2 ~> (1/6) 2/3 (14vi) and by a characteristic ~ll. In 
Fig. 3A (right) all (ii) state densities are different from zero. For the 19v~, 
31vz models, when tool--*0, ro=m~lll/3--+ cx3. In Figs. 4A (left) and 5A 
[three (ii) state densities nonzero] and Fig. 4A (right) (all nonzero) we see 
modifications of the domains when the rest particle is large (m0~ small). 

2. For anisotropic solutions with I~1 1> 1/2 we observe, for both models, 
the p = P c  curve and nonmonotonic Ez (some values for the strength of the 
effect are given) and only for models with rest particles for ICI < 1/2. In 
Fig. 2B the domain is limited from positivity and from a characteristic 
velocity ~-~1. In Fig. 3B we see the difference when I~'1 < 1/2 and R is 
present. For the 18vi, 30vi models ro = 0, while ro ~ m ~  1/3 for the 19v;, 31 v~ 
models. We find differences for m02 small [Figs. 4B (top) and 5B] except 
if it is forbidden by positivity I-Fig. 4B (bottom)]. 

3. D I S C U S S I O N  

1. Let us consider two models differing by the presence of rest 
particles (12v~, 14v,., 18v~, 19v;, 30v~, 3lye). They have common properties 
for the isotropic solutions which hTtroduce new symmetries." They have the 
same characteristic velocities, using the energy and momentum conserva- 
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t ion  laws, which  do  no t  involve  rest  pa r t i c les  densi t ies ,  they  on ly  exist in 
some intervals of  the propagation speed (]([ >/1/2)  wi th  monotonic internal 
energy. However, for these isotropic solutions, we observe great modifications 
of the positivity domain when the rest particle density is large. F o r  the  
connec t ion  wi th  the c o n t i n u o u s  t heo ry  (p = Pc curves)  we d o  no t  see g rea t  
differences even when  the n u m b e r  o f  " h e x a g o n s "  increases .  

2. For anisotropic solutions we have  obse rved  t ha t  an  a d d i t i o n a l  sub-  
d o m a i n  can  exist  for ]([ < 1/2 wi th  p =Pc  curves  and  n o n m o n o t o n i c  E~ 

(A) 1"i- m~176 / 

0.5 1 

\ 
\,  ":'\ i 

Fig. 4_ (A) Top: 1By, 19v isotropic, (ii) m52~0, p.,_~:~0, n~_~:~0; (B) bottom: 18~,, 19v 
isotropic, (ii) densities # 0. (C) Top: 1By, 19v anisotropic, (ii) state only ns2-~0, ms2 50; 
( D ) bottom: 18v, 19v anisotropic, (ii) ms2 ~ 0, P~2 ~ 0. 
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Fig. 4. (Continued) 

only in the models with rest particle. This happens when the rest particle 
density is large, KI small, and these subdomains are not forbidden by 
positivity. Outside this KI interval we have found for both models some 
nonmonotonic internal energy. On comparison with the above isotropic 
solutions, this seems to be an anisotropic effect. 

3. These results have been obtained in a general framework which 
represents the minimal constraints. We could be more specific and retain 
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Fig. 5. (A) 30v, 31v isotropic, (ii) n s2#0 ,  m , 2 # O  , t , 2 # O .  (B) 30v, 31v anisotropic, (ii) state 
only n, 2 # 0 P.,2 # 0. 

only P = P c  domains (only one point in Fig. 2a and curves in other 
figures), only isotropic solutions (results for Ill < 1/2 disappear). For the 
nonlinear equations we could try to solve the equations (not only the 
vanishing of the collision terms), which means for the 31 vi model the resolu- 
tion o f  a 19 x 19 system (Riccati type for quadratic collisions) and it seems 
difficult to handle the problem with more and more velocities. Finally no 
boundary conditions, which could affect the present results, were considered. 



Hexagonal Discrete Boltzmann Models 

A P P E N D I X .  I S O T R O P I C  ( i )  S T A T E  
S T A T E  D E N S I T I E S  

We define G . , = n : / n . ~ ] .  F o r  the 
pa ramete r s  ns l ,  G' , ,  Ps i ,  or  ms] an d  

_ m 2 / 3  __ e:Z/ll = to~15 = r o  2 or  r 0 = 0: Pom - - , , . o ]  - -  ~o~ 

,/ - -  ~ 1,71/4 
s 3 - - , ~ ' s l , ' , s 2  , 

p :  = p~l(  a~2) 3/2, 

"~ __ 3 
G P.,.I - ns3, 

ms2 = m ,  i Fl~'2 

- 3  
S s 2  ~ -  S s l  Hs2 , ,  

- -  - 3  
I s 2  - -  l s l l l s 2  ~ 

- -  - 3  
I s 4  - -  tsl ns2, 

T h e o r e m  2. 
densities.  We  have 
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W I T H  N O N Z E R O  ( i i )  

(ii) s tate we choose as a rb i t r a ry  
for the i so t ropic  (i) state n0 j - -1 ,  

,73/4 
H s 4  = / ' / s l  " ' s 2  

P,3 =Psi(G2) 3/4 

3 2 
P s t  = m s l n s 3  

- -  - 1 / 2  
ms3 -- m s l  ns2 , 

t ,  173/2  
Ss3 ~ ~ '~s2 ' 

Is3 = ts I ns2 

t 4 _ s K 
s l r l s l  - - m s l  s2 

f f 3 [ 2  
ms4 = ms i --s2 

S ,~ 8 / 3  __  r ~  1 1 / 3 v ~ 5 / 2  
s l " s l  - - ' " . r l  " s 2  

[([/> 1/2 for i so t ropic  (i) state and  nonze ro  (ii) s tate 

X i :----hi, mi ,  ti, 

x § = 2 ( x l  + x , _ ) + x 3 + x 4  

) 9 : = P j ,  Sj, Y + - = y l - I - y z + ( 1 - 1 - 1 ) y 3 / 2 ,  Y + + = Y ] + Y z  

A : =  0.5n - + 4 m -  + 32t - + 3 6 s -  + 4 . 5 p -  
(A.2) 

B : =  0 . 5 n  + + 2 m  + + 8 t  + + 3 / 7  + + 12s + 

C : = 2 m  ++  + 8 t  + + + 0 . 5 1 l + +  + 18s + + + 4 . 5 p +  + 

D : = n -  + 2 m -  + 4 t -  + 3 p -  + 6 s -  

[ E ] = O - - + r  [ J ] = O - - + r  

F r o m  (A.1) if 17s2<1 we find posi t ive x - ,  y - ,  A, deduce  the 

inequal i t ies  x,., > xs3 > xs4 > x~.z, Ysl >Y~.3 >Y~2 (with  xi--+ x~.i .... when  
ni --+ n.,.i,...). If A > 0, 0 < r < 1/2, it follows tha t  X : =  2A --  B + C -  D/2  < 0 

with 

X =  0ll -n4) +.9(ml --m4) -F 5(m 3 --m.,) 

+ 54(t l  - t4) + 70(tz --  t3) + (75sl - 63s2 - 12s3) + (9pl --  6p2 - 3p3) 

In  each bracke t  we replace x~ by  x,i an d  due to the inequali t ies ,  X >  0. 
Similarly,  A < 0 leads to incompat ib i l i t ies .  

(A . I )  

X + = X  1 + X 2 + ( 3 _ _  1)(X3-t-X4)/2 



346 Cornille 

R E F E R E N C E S  

1. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56:1505 (1986). 
2. P. Grosfils, J. P. Boon, and P. Lallemand, Phys. Rev. Left. 68:107 (1992). 
3. M. Ernst, In Discrete Models of Fluid Dynamics, A. S. Alves, ed. (World Scientific, 

Singapore, 1991 ), p. 186. 
4. H. Cornille, TTSP24, Nos. 4-5 (1995); "VII hTternational Conference on Waves," T. 

Ruggeri, ed. (1993). 
5. C. Cercignani, Transport Theory Stat. Phys. 23:1 (1994). 


